Tensor product approximation with optimal rank in quantum chemistry
نویسندگان
چکیده
منابع مشابه
Low-rank Tensor Approximation
Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...
متن کاملQuantum Tensor Product Codes
Jihao Fan, ∗ Yonghui Li, † Min-Hsiu Hsieh, ‡ and Hanwu Chen 4, § School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 211189, China School of Electrical and Information Engineering, University of Sydney, Sydney, NSW 2006, Australia Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Syd...
متن کاملRelative Error Tensor Low Rank Approximation
We consider relative error low rank approximation of tensors with respect to the Frobenius norm. Namely, given an order-q tensor A ∈ R ∏q i=1 ni , output a rank-k tensor B for which ‖A − B‖F ≤ (1 + ) OPT, where OPT = infrank-k A′ ‖A − A‖F . Despite much success on obtaining relative error low rank approximations for matrices, no such results were known for tensors. One structural issue is that ...
متن کاملBEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES
We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...
متن کاملTensor rank is not multiplicative under the tensor product
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an `-tensor. The tensor product of s and t is a (k + `)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2007
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.2761871